70 lines
3.1 KiB
Python
70 lines
3.1 KiB
Python
|
|
from .base_model import BaseModel
|
||
|
|
from . import networks
|
||
|
|
|
||
|
|
|
||
|
|
class TestModel(BaseModel):
|
||
|
|
""" This TesteModel can be used to generate CycleGAN results for only one direction.
|
||
|
|
This model will automatically set '--dataset_mode single', which only loads the images from one collection.
|
||
|
|
|
||
|
|
See the test instruction for more details.
|
||
|
|
"""
|
||
|
|
@staticmethod
|
||
|
|
def modify_commandline_options(parser, is_train=True):
|
||
|
|
"""Add new dataset-specific options, and rewrite default values for existing options.
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
parser -- original option parser
|
||
|
|
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
the modified parser.
|
||
|
|
|
||
|
|
The model can only be used during test time. It requires '--dataset_mode single'.
|
||
|
|
You need to specify the network using the option '--model_suffix'.
|
||
|
|
"""
|
||
|
|
assert not is_train, 'TestModel cannot be used during training time'
|
||
|
|
parser.set_defaults(dataset_mode='single')
|
||
|
|
parser.add_argument('--model_suffix', type=str, default='', help='In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.')
|
||
|
|
|
||
|
|
return parser
|
||
|
|
|
||
|
|
def __init__(self, opt):
|
||
|
|
"""Initialize the pix2pix class.
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
|
||
|
|
"""
|
||
|
|
assert(not opt.isTrain)
|
||
|
|
BaseModel.__init__(self, opt)
|
||
|
|
# specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
|
||
|
|
self.loss_names = []
|
||
|
|
# specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
|
||
|
|
self.visual_names = ['real', 'fake']
|
||
|
|
# specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>
|
||
|
|
self.model_names = ['G' + opt.model_suffix] # only generator is needed.
|
||
|
|
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG,
|
||
|
|
opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
|
||
|
|
|
||
|
|
# assigns the model to self.netG_[suffix] so that it can be loaded
|
||
|
|
# please see <BaseModel.load_networks>
|
||
|
|
setattr(self, 'netG' + opt.model_suffix, self.netG) # store netG in self.
|
||
|
|
|
||
|
|
def set_input(self, input):
|
||
|
|
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
input: a dictionary that contains the data itself and its metadata information.
|
||
|
|
|
||
|
|
We need to use 'single_dataset' dataset mode. It only load images from one domain.
|
||
|
|
"""
|
||
|
|
self.real = input['A'].to(self.device)
|
||
|
|
self.image_paths = input['A_paths']
|
||
|
|
|
||
|
|
def forward(self):
|
||
|
|
"""Run forward pass."""
|
||
|
|
self.fake = self.netG(self.real) # G(real)
|
||
|
|
|
||
|
|
def optimize_parameters(self):
|
||
|
|
"""No optimization for test model."""
|
||
|
|
pass
|