284 lines
7.0 KiB
Plaintext
Raw Normal View History

2025-08-19 15:10:55 +08:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/bkkaggle/pytorch-CycleGAN-and-pix2pix/blob/master/pix2pix.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "7wNjDKdQy35h"
},
"source": [
"# Install"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "TRm-USlsHgEV"
},
"outputs": [],
"source": [
"!git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "Pt3igws3eiVp"
},
"outputs": [],
"source": [
"import os\n",
"os.chdir('pytorch-CycleGAN-and-pix2pix/')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "z1EySlOXwwoa"
},
"outputs": [],
"source": [
"!pip install -r requirements.txt"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "8daqlgVhw29P"
},
"source": [
"# Datasets\n",
"\n",
"Download one of the official datasets with:\n",
"\n",
"- `bash ./datasets/download_pix2pix_dataset.sh [cityscapes, night2day, edges2handbags, edges2shoes, facades, maps]`\n",
"\n",
"Or use your own dataset by creating the appropriate folders and adding in the images. Follow the instructions [here](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/datasets.md#pix2pix-datasets)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "vrdOettJxaCc"
},
"outputs": [],
"source": [
"!bash ./datasets/download_pix2pix_dataset.sh facades"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "gdUz4116xhpm"
},
"source": [
"# Pretrained models\n",
"\n",
"Download one of the official pretrained models with:\n",
"\n",
"- `bash ./scripts/download_pix2pix_model.sh [edges2shoes, sat2map, map2sat, facades_label2photo, and day2night]`\n",
"\n",
"Or add your own pretrained model to `./checkpoints/{NAME}_pretrained/latest_net_G.pt`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "GC2DEP4M0OsS"
},
"outputs": [],
"source": [
"!bash ./scripts/download_pix2pix_model.sh facades_label2photo"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "yFw1kDQBx3LN"
},
"source": [
"# Training\n",
"\n",
"- `python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA`\n",
"\n",
"Change the `--dataroot` and `--name` to your own dataset's path and model's name. Use `--gpu_ids 0,1,..` to train on multiple GPUs and `--batch_size` to change the batch size. Add `--direction BtoA` if you want to train a model to transfrom from class B to A."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "0sp7TCT2x9dB"
},
"outputs": [],
"source": [
"!python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA --display_id -1"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "9UkcaFZiyASl"
},
"source": [
"# Testing\n",
"\n",
"- `python test.py --dataroot ./datasets/facades --direction BtoA --model pix2pix --name facades_pix2pix`\n",
"\n",
"Change the `--dataroot`, `--name`, and `--direction` to be consistent with your trained model's configuration and how you want to transform images.\n",
"\n",
"> from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix:\n",
"> Note that we specified --direction BtoA as Facades dataset's A to B direction is photos to labels.\n",
"\n",
"> If you would like to apply a pre-trained model to a collection of input images (rather than image pairs), please use --model test option. See ./scripts/test_single.sh for how to apply a model to Facade label maps (stored in the directory facades/testB).\n",
"\n",
"> See a list of currently available models at ./scripts/download_pix2pix_model.sh"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "mey7o6j-0368"
},
"outputs": [],
"source": [
"!ls checkpoints/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "uCsKkEq0yGh0"
},
"outputs": [],
"source": [
"!python test.py --dataroot ./datasets/facades --direction BtoA --model pix2pix --name facades_label2photo_pretrained --use_wandb"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "OzSKIPUByfiN"
},
"source": [
"# Visualize"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "9Mgg8raPyizq"
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"img = plt.imread('./results/facades_label2photo_pretrained/test_latest/images/100_fake_B.png')\n",
"plt.imshow(img)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "0G3oVH9DyqLQ"
},
"outputs": [],
"source": [
"img = plt.imread('./results/facades_label2photo_pretrained/test_latest/images/100_real_A.png')\n",
"plt.imshow(img)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "ErK5OC1j1LH4"
},
"outputs": [],
"source": [
"img = plt.imread('./results/facades_label2photo_pretrained/test_latest/images/100_real_B.png')\n",
"plt.imshow(img)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"include_colab_link": true,
"name": "pix2pix",
"provenance": []
},
"environment": {
"name": "tf2-gpu.2-3.m74",
"type": "gcloud",
"uri": "gcr.io/deeplearning-platform-release/tf2-gpu.2-3:m74"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}