1/train.py

27 lines
1.4 KiB
Python
Raw Permalink Normal View History

2025-04-18 19:56:58 +08:00
import argparse
import functools
from mvector.trainer import MVectorTrainer
from mvector.utils.utils import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('configs', str, 'configs/ecapa_tdnn.yml', '配置文件')
add_arg("local_rank", int, 0, '多卡训练需要的参数')
add_arg("use_gpu", bool, True, '是否使用GPU训练')
add_arg('augment_conf_path',str, 'configs/augmentation.json', '数据增强的配置文件为json格式')
add_arg('save_model_path', str, 'models/', '模型保存的路径')
add_arg('resume_model', str, None, '恢复训练当为None则不使用预训练模型')
add_arg('save_image_path', str, 'output/images/', "保存结果图的路径")
add_arg('pretrained_model', str, 'models/ecapa_tdnn_MFCC/best_model/', '预训练模型的路径当为None则不使用预训练模型')
args = parser.parse_args()
print_arguments(args=args)
# 获取训练器
trainer = MVectorTrainer(configs=args.configs, use_gpu=args.use_gpu)
trainer.train(save_model_path=args.save_model_path,
resume_model=args.resume_model,
pretrained_model=args.pretrained_model,
augment_conf_path=args.augment_conf_path)