import argparse import functools import time from mvector.trainer import MVectorTrainer from mvector.utils.utils import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg('configs', str, 'configs/ecapa_tdnn.yml', "配置文件") add_arg("use_gpu", bool, True, "是否使用GPU评估模型") add_arg('save_image_path', str, 'output/images/', "保存结果图的路径") add_arg('resume_model', str, 'models/ecapa_tdnn_MFCC/best_model/', "模型的路径") args = parser.parse_args() print_arguments(args=args) # 获取训练器 trainer = MVectorTrainer(configs=args.configs, use_gpu=args.use_gpu) # 开始评估 start = time.time() tpr, fpr, eer, threshold = trainer.evaluate(resume_model=args.resume_model, save_image_path=args.save_image_path) end = time.time() print('评估消耗时间:{}s,threshold:{:.2f},tpr:{:.5f}, fpr: {:.5f}, eer: {:.5f}' .format(int(end - start), threshold, tpr, fpr, eer))