import torch import torch.nn as nn import torch.nn.functional as F from mvector.models.pooling import AttentiveStatsPool, TemporalAveragePooling from mvector.models.pooling import SelfAttentivePooling, TemporalStatisticsPooling class Res2Conv1dReluBn(nn.Module): def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False, scale=4): super().__init__() assert channels % scale == 0, "{} % {} != 0".format(channels, scale) self.scale = scale self.width = channels // scale self.nums = scale if scale == 1 else scale - 1 self.convs = [] self.bns = [] for i in range(self.nums): self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias)) self.bns.append(nn.BatchNorm1d(self.width)) self.convs = nn.ModuleList(self.convs) self.bns = nn.ModuleList(self.bns) def forward(self, x): out = [] spx = torch.split(x, self.width, 1) # 遍历每个分支 for i in range(self.nums): if i == 0: sp = spx[i] else: # 其他分支则将当前子特征与前面所有子特征相加,形成残差连接 sp = sp + spx[i] # Order: conv -> relu -> bn sp = self.convs[i](sp) sp = self.bns[i](F.relu(sp)) out.append(sp) if self.scale != 1: out.append(spx[self.nums]) # 将所有子分支的结果在通道维度上合并 out = torch.cat(out, dim=1) return out class Conv1dReluBn(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False): super().__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) self.bn = nn.BatchNorm1d(out_channels) def forward(self, x): return self.bn(F.relu(self.conv(x))) class SE_Connect(nn.Module): def __init__(self, channels, s=2): super().__init__() assert channels % s == 0, "{} % {} != 0".format(channels, s) self.linear1 = nn.Linear(channels, channels // s) self.linear2 = nn.Linear(channels // s, channels) def forward(self, x): out = x.mean(dim=2) out = F.relu(self.linear1(out)) out = torch.sigmoid(self.linear2(out)) out = x * out.unsqueeze(2) return out def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale): """ 初始化函数。 参数: - input_size: 输入尺寸,默认为80。 - channels: 通道数,默认为512。 - kernel_size: 卷积核大小, 默认为3。 - embd_dim: 嵌入维度,默认为192。 - pooling_type: 池化类型,默认为"ASP",可选值包括"ASP"、"SAP"、"TAP"、"TSP"。 - dilation : 空洞卷积的空洞率,默认为1。 - scale: SE模块的缩放比例,默认为8。 返回值: - 无。 """ return nn.Sequential( Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), Res2Conv1dReluBn(channels, kernel_size, stride, padding, dilation, scale=scale), Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), SE_Connect(channels) ) class EcapaTdnn(nn.Module): """ 初始化函数。 参数: - input_size: 输入尺寸,默认为80。 - channels: 通道数,默认为512。 - embd_dim: 嵌入维度,默认为192。 - pooling_type: 池化类型,默认为"ASP",可选值包括"ASP"、"SAP"、"TAP"、"TSP"。 """ def __init__(self, input_size=80, channels=512, embd_dim=192, pooling_type="ASP"): super().__init__() self.layer1 = Conv1dReluBn(input_size, channels, kernel_size=5, padding=2, dilation=1) self.layer2 = SE_Res2Block(channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8) self.layer3 = SE_Res2Block(channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8) self.layer4 = SE_Res2Block(channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8) cat_channels = channels * 3 self.emb_size = embd_dim self.conv = nn.Conv1d(cat_channels, cat_channels, kernel_size=1) if pooling_type == "ASP": self.pooling = AttentiveStatsPool(cat_channels, 128) self.bn1 = nn.BatchNorm1d(cat_channels * 2) self.linear = nn.Linear(cat_channels * 2, embd_dim) self.bn2 = nn.BatchNorm1d(embd_dim) elif pooling_type == "SAP": self.pooling = SelfAttentivePooling(cat_channels, 128) self.bn1 = nn.BatchNorm1d(cat_channels) self.linear = nn.Linear(cat_channels, embd_dim) self.bn2 = nn.BatchNorm1d(embd_dim) elif pooling_type == "TAP": self.pooling = TemporalAveragePooling() self.bn1 = nn.BatchNorm1d(cat_channels) self.linear = nn.Linear(cat_channels, embd_dim) self.bn2 = nn.BatchNorm1d(embd_dim) elif pooling_type == "TSP": self.pooling = TemporalStatisticsPooling() self.bn1 = nn.BatchNorm1d(cat_channels * 2) self.linear = nn.Linear(cat_channels * 2, embd_dim) self.bn2 = nn.BatchNorm1d(embd_dim) else: raise Exception(f'没有{pooling_type}池化层!') # def forward(self, x): # """ # Compute embeddings. # Args: # x (torch.Tensor): Input data with shape (N, time, freq). # Returns: # torch.Tensor: Output embeddings with shape (N, self.emb_size, 1) # """ # x = x.transpose(2, 1) # out1 = self.layer1(x) # out2 = self.layer2(out1) + out1 # out3 = self.layer3(out1 + out2) + out1 + out2 # out4 = self.layer4(out1 + out2 + out3) + out1 + out2 + out3 # out = torch.cat([out2, out3, out4], dim=1) # out = F.relu(self.conv(out)) # out = self.bn1(self.pooling(out)) # out = self.bn2(self.linear(out)) # return out def forward(self, x): """ 计算嵌入向量。 参数: x (torch.Tensor): 输入数据,形状为 (N, time, freq),其中N为样本数量,time为时间维度,freq为频率维度。 返回值: torch.Tensor: 输出嵌入向量,形状为 (N, self.emb_size, 1) """ # 将输入数据的频率和时间维度交换 x = x.transpose(2, 1) # 通过第一层卷积层 out1 = self.layer1(x) # 通过第二层卷积层,并与第一层输出相加 out2 = self.layer2(out1) + out1 # 通过第三层卷积层,并依次与前两层输出相加 out3 = self.layer3(out1 + out2) + out1 + out2 # 通过第四层卷积层,并依次与前三层输出相加 out4 = self.layer4(out1 + out2 + out3) + out1 + out2 + out3 # 将第二、三、四层的输出在特征维度上连接 out = torch.cat([out2, out3, out4], dim=1) # 应用ReLU激活函数,并通过卷积层处理 out = F.relu(self.conv(out)) # 经过批归一化和池化操作 out = self.bn1(self.pooling(out)) # 经过线性变换和批归一化 out = self.bn2(self.linear(out)) return out