import argparse import functools from mvector.trainer import MVectorTrainer from mvector.utils.utils import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg('configs', str, 'configs/ecapa_tdnn.yml', '配置文件') add_arg("local_rank", int, 0, '多卡训练需要的参数') add_arg("use_gpu", bool, True, '是否使用GPU训练') add_arg('augment_conf_path',str, 'configs/augmentation.json', '数据增强的配置文件,为json格式') add_arg('save_model_path', str, 'models/', '模型保存的路径') add_arg('resume_model', str, None, '恢复训练,当为None则不使用预训练模型') add_arg('save_image_path', str, 'output/images/', "保存结果图的路径") add_arg('pretrained_model', str, 'models/ecapa_tdnn_MFCC/best_model/', '预训练模型的路径,当为None则不使用预训练模型') args = parser.parse_args() print_arguments(args=args) # 获取训练器 trainer = MVectorTrainer(configs=args.configs, use_gpu=args.use_gpu) trainer.train(save_model_path=args.save_model_path, resume_model=args.resume_model, pretrained_model=args.pretrained_model, augment_conf_path=args.augment_conf_path)