190 lines
7.3 KiB
Python
190 lines
7.3 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
from mvector.models.pooling import AttentiveStatsPool, TemporalAveragePooling
|
||
from mvector.models.pooling import SelfAttentivePooling, TemporalStatisticsPooling
|
||
|
||
|
||
class Res2Conv1dReluBn(nn.Module):
|
||
def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False, scale=4):
|
||
super().__init__()
|
||
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
|
||
self.scale = scale
|
||
self.width = channels // scale
|
||
self.nums = scale if scale == 1 else scale - 1
|
||
|
||
self.convs = []
|
||
self.bns = []
|
||
for i in range(self.nums):
|
||
self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
|
||
self.bns.append(nn.BatchNorm1d(self.width))
|
||
self.convs = nn.ModuleList(self.convs)
|
||
self.bns = nn.ModuleList(self.bns)
|
||
|
||
def forward(self, x):
|
||
out = []
|
||
spx = torch.split(x, self.width, 1)
|
||
# 遍历每个分支
|
||
for i in range(self.nums):
|
||
if i == 0:
|
||
sp = spx[i]
|
||
else:
|
||
# 其他分支则将当前子特征与前面所有子特征相加,形成残差连接
|
||
sp = sp + spx[i]
|
||
# Order: conv -> relu -> bn
|
||
sp = self.convs[i](sp)
|
||
sp = self.bns[i](F.relu(sp))
|
||
out.append(sp)
|
||
if self.scale != 1:
|
||
out.append(spx[self.nums])
|
||
|
||
# 将所有子分支的结果在通道维度上合并
|
||
out = torch.cat(out, dim=1)
|
||
return out
|
||
|
||
|
||
class Conv1dReluBn(nn.Module):
|
||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
|
||
super().__init__()
|
||
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
|
||
self.bn = nn.BatchNorm1d(out_channels)
|
||
|
||
def forward(self, x):
|
||
return self.bn(F.relu(self.conv(x)))
|
||
|
||
|
||
class SE_Connect(nn.Module):
|
||
def __init__(self, channels, s=2):
|
||
super().__init__()
|
||
assert channels % s == 0, "{} % {} != 0".format(channels, s)
|
||
self.linear1 = nn.Linear(channels, channels // s)
|
||
self.linear2 = nn.Linear(channels // s, channels)
|
||
|
||
def forward(self, x):
|
||
out = x.mean(dim=2)
|
||
out = F.relu(self.linear1(out))
|
||
out = torch.sigmoid(self.linear2(out))
|
||
out = x * out.unsqueeze(2)
|
||
return out
|
||
|
||
def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
|
||
"""
|
||
初始化函数。
|
||
|
||
参数:
|
||
- input_size: 输入尺寸,默认为80。
|
||
- channels: 通道数,默认为512。
|
||
- kernel_size: 卷积核大小, 默认为3。
|
||
- embd_dim: 嵌入维度,默认为192。
|
||
- pooling_type: 池化类型,默认为"ASP",可选值包括"ASP"、"SAP"、"TAP"、"TSP"。
|
||
- dilation : 空洞卷积的空洞率,默认为1。
|
||
- scale: SE模块的缩放比例,默认为8。
|
||
|
||
返回值:
|
||
- 无。
|
||
"""
|
||
return nn.Sequential(
|
||
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
|
||
Res2Conv1dReluBn(channels, kernel_size, stride, padding, dilation, scale=scale),
|
||
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
|
||
SE_Connect(channels)
|
||
)
|
||
|
||
|
||
class EcapaTdnn(nn.Module):
|
||
"""
|
||
初始化函数。
|
||
|
||
参数:
|
||
- input_size: 输入尺寸,默认为80。
|
||
- channels: 通道数,默认为512。
|
||
- embd_dim: 嵌入维度,默认为192。
|
||
- pooling_type: 池化类型,默认为"ASP",可选值包括"ASP"、"SAP"、"TAP"、"TSP"。
|
||
"""
|
||
def __init__(self, input_size=80, channels=512, embd_dim=192, pooling_type="ASP"):
|
||
super().__init__()
|
||
self.layer1 = Conv1dReluBn(input_size, channels, kernel_size=5, padding=2, dilation=1)
|
||
self.layer2 = SE_Res2Block(channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8)
|
||
self.layer3 = SE_Res2Block(channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8)
|
||
self.layer4 = SE_Res2Block(channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8)
|
||
|
||
cat_channels = channels * 3
|
||
self.emb_size = embd_dim
|
||
self.conv = nn.Conv1d(cat_channels, cat_channels, kernel_size=1)
|
||
if pooling_type == "ASP":
|
||
self.pooling = AttentiveStatsPool(cat_channels, 128)
|
||
self.bn1 = nn.BatchNorm1d(cat_channels * 2)
|
||
self.linear = nn.Linear(cat_channels * 2, embd_dim)
|
||
self.bn2 = nn.BatchNorm1d(embd_dim)
|
||
elif pooling_type == "SAP":
|
||
self.pooling = SelfAttentivePooling(cat_channels, 128)
|
||
self.bn1 = nn.BatchNorm1d(cat_channels)
|
||
self.linear = nn.Linear(cat_channels, embd_dim)
|
||
self.bn2 = nn.BatchNorm1d(embd_dim)
|
||
elif pooling_type == "TAP":
|
||
self.pooling = TemporalAveragePooling()
|
||
self.bn1 = nn.BatchNorm1d(cat_channels)
|
||
self.linear = nn.Linear(cat_channels, embd_dim)
|
||
self.bn2 = nn.BatchNorm1d(embd_dim)
|
||
elif pooling_type == "TSP":
|
||
self.pooling = TemporalStatisticsPooling()
|
||
self.bn1 = nn.BatchNorm1d(cat_channels * 2)
|
||
self.linear = nn.Linear(cat_channels * 2, embd_dim)
|
||
self.bn2 = nn.BatchNorm1d(embd_dim)
|
||
else:
|
||
raise Exception(f'没有{pooling_type}池化层!')
|
||
|
||
# def forward(self, x):
|
||
# """
|
||
# Compute embeddings.
|
||
|
||
# Args:
|
||
# x (torch.Tensor): Input data with shape (N, time, freq).
|
||
|
||
# Returns:
|
||
# torch.Tensor: Output embeddings with shape (N, self.emb_size, 1)
|
||
# """
|
||
# x = x.transpose(2, 1)
|
||
# out1 = self.layer1(x)
|
||
# out2 = self.layer2(out1) + out1
|
||
# out3 = self.layer3(out1 + out2) + out1 + out2
|
||
# out4 = self.layer4(out1 + out2 + out3) + out1 + out2 + out3
|
||
|
||
# out = torch.cat([out2, out3, out4], dim=1)
|
||
# out = F.relu(self.conv(out))
|
||
# out = self.bn1(self.pooling(out))
|
||
# out = self.bn2(self.linear(out))
|
||
# return out
|
||
|
||
def forward(self, x):
|
||
"""
|
||
计算嵌入向量。
|
||
|
||
参数:
|
||
x (torch.Tensor): 输入数据,形状为 (N, time, freq),其中N为样本数量,time为时间维度,freq为频率维度。
|
||
|
||
返回值:
|
||
torch.Tensor: 输出嵌入向量,形状为 (N, self.emb_size, 1)
|
||
"""
|
||
# 将输入数据的频率和时间维度交换
|
||
x = x.transpose(2, 1)
|
||
# 通过第一层卷积层
|
||
out1 = self.layer1(x)
|
||
# 通过第二层卷积层,并与第一层输出相加
|
||
out2 = self.layer2(out1) + out1
|
||
# 通过第三层卷积层,并依次与前两层输出相加
|
||
out3 = self.layer3(out1 + out2) + out1 + out2
|
||
# 通过第四层卷积层,并依次与前三层输出相加
|
||
out4 = self.layer4(out1 + out2 + out3) + out1 + out2 + out3
|
||
|
||
# 将第二、三、四层的输出在特征维度上连接
|
||
out = torch.cat([out2, out3, out4], dim=1)
|
||
# 应用ReLU激活函数,并通过卷积层处理
|
||
out = F.relu(self.conv(out))
|
||
# 经过批归一化和池化操作
|
||
out = self.bn1(self.pooling(out))
|
||
# 经过线性变换和批归一化
|
||
out = self.bn2(self.linear(out))
|
||
return out
|