27 lines
1.4 KiB
Python
27 lines
1.4 KiB
Python
import argparse
|
||
import functools
|
||
|
||
from mvector.trainer import MVectorTrainer
|
||
from mvector.utils.utils import add_arguments, print_arguments
|
||
|
||
parser = argparse.ArgumentParser(description=__doc__)
|
||
add_arg = functools.partial(add_arguments, argparser=parser)
|
||
add_arg('configs', str, 'configs/ecapa_tdnn.yml', '配置文件')
|
||
add_arg("local_rank", int, 0, '多卡训练需要的参数')
|
||
add_arg("use_gpu", bool, True, '是否使用GPU训练')
|
||
add_arg('augment_conf_path',str, 'configs/augmentation.json', '数据增强的配置文件,为json格式')
|
||
add_arg('save_model_path', str, 'models/', '模型保存的路径')
|
||
add_arg('resume_model', str, None, '恢复训练,当为None则不使用预训练模型')
|
||
add_arg('save_image_path', str, 'output/images/', "保存结果图的路径")
|
||
add_arg('pretrained_model', str, 'models/ecapa_tdnn_MFCC/best_model/', '预训练模型的路径,当为None则不使用预训练模型')
|
||
args = parser.parse_args()
|
||
print_arguments(args=args)
|
||
|
||
# 获取训练器
|
||
trainer = MVectorTrainer(configs=args.configs, use_gpu=args.use_gpu)
|
||
|
||
trainer.train(save_model_path=args.save_model_path,
|
||
resume_model=args.resume_model,
|
||
pretrained_model=args.pretrained_model,
|
||
augment_conf_path=args.augment_conf_path)
|